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Abstract Shelled pteropods and planktic foraminifers are calcifying zooplankton that contribute to the
biological carbon pump via the sinking of their calcareous shells. However, their importance for regional and
global plankton biomass and carbon fluxes is not well understood. Here, we modeled global annual patterns

of pteropod and foraminifer total carbon (TC) biomass and total inorganic carbon (TIC) export fluxes over

the top 200 m using five species distribution models (SDMs). An extended version of the MARine Ecosystem
DATa (MAREDAT) of zooplankton abundance observations was used to estimate the biomass of both plankton
groups. We found hotspots of mean annual pteropod biomass in the high Northern latitudes and the global
upwelling systems, and in the high latitudes of both hemispheres and the tropics for foraminifers. This largely
agrees with previously observed distributions. For both groups, temperature is the strongest environmental
correlate, followed by chlorophyll-a. We found mean annual standing stocks of 52 Tg TC (48 to 57 Tg TC) and
0.9 Tg TC (0.6 to 1.1 Tg TC) for pteropods and foraminifers, respectively. This translates to mean annual TIC
fluxes of 14 Tg TICyr~! (9 to 22 Tg TIC yr~!) for pteropod shells and 11 Tg TICyr~! (3 to 27 Tg TICyr~!) for
foraminifer tests. These results are similar to previous estimates for foraminifers, but approximately a factor

of ten lower for pteropods. Pteropods contribute 0.2%—3.2% and foraminifers 0.1%-3.8% to global surface
carbonate fluxes. Including global coccolithophore fluxes, this leaves 40%-60% of the global carbonate

fluxes unaccounted for. Our figures are likely lower-bound estimates due to sampling data characteristics and
uncertainty associated with organism growth rates.

1. Introduction

Marine calcifying plankton play a key role in the ocean's carbon cycle, particularly through the formation, sink-
ing, and dissolution of their CaCOj, shells (Sarmiento & Gruber, 2006b). These processes impact the carbonate
system throughout the water column (Sarmiento & Gruber, 2006a; Takahashi & Bé, 1984). At the ocean surface,
the formation of the calcium carbonate shells consumes the buffering carbonate ion CO3>~ and hence causes
outgassing of CO, (Sarmiento & Gruber, 2006a). In contrast, the sinking shells of calcifying organisms consti-
tute a downward flux of inorganic carbon from the surface ocean amounting to 0.7 to 4.7Pg C yr~! (Ziveri
et al., 2023). At depth, a large fraction of these shells dissolves, thereby increasing ocean alkalinity (Sarmiento
& Gruber, 2006a). The export of calcium carbonate shells is responsible for approximately 20% of global
surface ocean carbon export fluxes, with soft-tissue export making up 70% of the fluxes and solubility effects
responsible for 10% (Sarmiento & Gruber, 2006a). However, there are significant uncertainties regarding the
spatial and seasonal calcium carbon flux patterns and the relative contribution of the different plankton groups
to global calcification rates. The major groups of calcifying plankton are coccolithophores, shelled pteropods
and planktic foraminifers (BednarSek, Mozina, et al., 2012; Lalli & Gilmer, 1989; Schiebel, 2002; Schiebel &
Hemleben, 2017; Stepien, 1980). Shelled pteropods from the suborder Thecosomata (in the following referred to
as pteropods) build shells of aragonite, a metastable form of calcium carbonate (Lalli & Gilmer, 1989) with adults
ranging from 1 to 30 mm in size (BednarSek, Mozina, et al., 2012; BednarSek, Tarling, et al., 2012). Aragonite is
50% more soluble than calcite (Mucci, 1983), which makes pteropods more sensitive to ocean acidification, that
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is, the long-term reduction of ocean pH due to the dissolution of excess atmospheric CO, in the water (Caldeira
& Wickett, 2003), than calcite-shelled organisms (Bednarsek et al., 2016; Doney et al., 2009; Fabry et al., 2008;
Manno et al., 2016). Pteropods are flux feeders, that is, they secrete a floating mucus web to trap sinking organic
particles (Gilmer & Harbison, 1986). They are active swimmers and some species perform diel vertical migration
(DVM), feeding at night at the surface and spending the day at depths between 100 m and in some cases up to
1,000 m (Bé & Gilmer, 1977; Bednarsek, Tarling, et al., 2012) to avoid predation.

Foraminifers build calcareous tests that can reach diameters ranging between 100 pm and 1 mm (Frerichs
et al., 1972; Schiebel & Hemleben, 2017). They are generally omnivorous and can capture prey actively, but
feeding preferences differ between species (Anderson et al., 1979; Caron & Bé, 1984; Rhumbler, 1911; Spindler
et al., 1984) with some species also harboring facultative photosymbionts (Hemleben et al., 1989). The global
abundances and habitat suitability of pteropods and foraminifers are known to be controlled by a range of
environmental parameters, including temperature (Beaugrand et al., 2010; Bednarsek et al., 2022; Helaouét &
Beaugrand, 2009; Jonkers et al., 2019), chlorophyll-a as a proxy for food availability (Pinkerton et al., 2020;
Thibodeau et al., 2019; Vereshchaka et al., 2022), and parameters related to physical mixing that influence phyto-
plankton growth through light availability and particle sinking rates (BednarSek et al., 2022; Boyce et al., 2010;
Govoni et al., 2010; Longhurst, 2007; Mackas et al., 2005; Rothschild & Osborn, 1988; Seuront et al., 2001).

The relative importance of the different calcifying plankton groups for global carbonate fluxes remains uncer-
tain. Coccolithophores were long thought to dominate the inorganic carbon export (Anglada-Ortiz et al., 2021;
Iglesias-Rodriguez et al., 2002; Rembauville et al., 2016; Rost & Riebesell, 2004; Schiebel, 2002). However, in
global observation-based estimates, they only accounted for 26%—52% of global carbonate fluxes, which leaves a
significant fraction of the carbonate fluxes unattributed (Buitenhuis, Vogt, et al., 2013; C. J. O’Brien, 2015). This
discrepancy shifted the attention towards the contribution of the two calcifying zooplankton groups, pteropods
and foraminifers. Recent observational studies estimated pteropods to contribute more than previously thought
to global surface carbonate fluxes, making up 20%-42% of the global annual mean carbonate fluxes from the
surface to depths below 200 m (BednarSek, Mozina, et al., 2012). Foraminifer carbon flux estimates vary by a
factor of 100 (Buitenhuis et al., 2019; Buitenhuis, Vogt, et al., 2013; Schiebel, 2002; Schiebel & Movellan, 2012).
However, recent studies based on newly available observations find significantly lower fluxes. Finally, a recent
mechanistic modelling study found pteropods to dominate upper subsurface CaCO, export, with contributions
ranging between 33% and 89% (Buitenhuis et al., 2019). These results further suggest the key role of pteropods
and foraminifers for the oceanic inorganic carbon cycle.

To derive the magnitude of carbon export mediated by zooplankton calcifiers, we first need to quantify the global
biomass standing stocks and characterize the global distribution patterns of these groups. Earlier descriptions of
the global patterns based on global plankton sampling data were made by the MARine Ecosystem DATa (MARE-
DAT) project (Buitenhuis, Vogt, et al., 2013). Additionally, large-scale observational data sets have been collected
by the Continuous Plankton Recorder (CPR) survey (Richardson et al., 2006). However, the existing observa-
tions are usually confined to specific ocean regions and have an overall low data coverage in the central oceanic
basins (BednarSek, Mozina, et al., 2012; de Garidel-Thoron et al., 2022; Schiebel & Movellan, 2012). Further-
more, plankton distributions are generally patchy in space and time (Beckmann et al., 1987; Boltovskoy, 1971;
Buitenhuis, Vogt, et al., 2013; Siccha et al., 2012), which causes high variability in the observed abundances.
Different sampling techniques and varying sampling depths and mesh sizes introduce additional variation
(Wells, 1973). The derivation of continuous global biomass maps and standing stock estimates for zooplankton
calcifiers hence requires us to account for these data gaps and biases by employing statistical methods.

Species distribution models (SDMs) empirically derive the relation between the target variable and a range of envi-
ronmental predictors through response curves and can then extrapolate said target variable to un-sampled regions
by projecting these response curves on predictor values (Elith & Leathwick, 2009; Guisan & Zimmermann, 2000;
Merow et al., 2014). They have been successfully used in marine macroecology to model plankton species distri-
butions based on occurrence data (presence/absence) (Barton et al., 2016; BednarSek et al., 2022; Benedetti
et al., 2021; Brun et al., 2015, 2016; Righetti et al., 2019) and are increasingly being used to model continuous
abundance values (De Broyer et al., 2014; Pinkerton et al., 2010; Waldock et al., 2022). In the present work, we
apply an SDM framework to estimate global biomasses for calcifying zooplankton.

To this end, we use newly compiled global data sets of pteropod and foraminifer abundances and species-specific
biomass conversion methods to calculate biomass concentrations over the top 200 m. We combine the global
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gridded biomass data with an ensemble of SDMs to address the following questions: (a) What are the bioge-
ographic patterns and main environmental covariates of global total carbon (TC) biomass for pteropods and
foraminifers (on a monthly, 1 X 1° gridded scale of the upper open ocean)? (b) What is the magnitude and range
of uncertainty of the associated annual total inorganic carbon (TIC) fluxes from pteropods and foraminifers?
Answering these questions will improve our understanding of the role calcifying zooplankton play in the global
marine carbon cycle and provide a new versatile modeling pipeline to map other quantitative, continuous variable

types.

2. Methods

We model the biomass patterns and associated carbon fluxes of pteropods and foraminifers at a global scale using
SDMs and updated abundance data sets for the two groups. To this end, we use a multi-step modeling pipeline
as shown in Figure 1.

2.1. Plankton Data
2.1.1. Data Collection and Pre-Processing

We updated the original MAREDAT pteropod and foraminifer abundance and biomass data sets of Schiebel and
Movellan (2012) and BednarSek, Mozina, et al. (2012) by aggregating abundance concentration data from large
scale sampling campaigns, existing data compilation efforts, and unpublished sampling data (Figure 1). The main
data sources (Figure S1 in Supporting Information S1) for both plankton groups included the Southern Ocean
Continuous Plankton Recorder (SO-CPR; Hosie, 2021), the Australian CPR (Aus-CPR; IMOS, 2022), the North
Atlantic and North Pacific CPR (NA-NP CPR; Johns, 2021), and the Coastal and Oceanic Plankton Ecology,
Production and Observation Database (COPEPOD; T. D. O’Brien, 2010). For pteropods, we added data from the
Tara Oceans expeditions (Branddo et al., 2021), the Atlantic Meridional Transect (AMT24; Burridge et al., 2017)
and AMT27 (Peijnenburg, 2021, Personal communication), as well as unpublished sampling data from the North
Atlantic (Schiebel, 2021, Personal communication). For foraminifers, we also gathered data from various individ-
ual sampling campaigns (Jentzen et al., 2018; Schiebel, 2002; Schiebel et al., 1995, 2001, 2002, 2004; Schiebel
& Hemleben, 2000).

We took several pre-processing steps to ensure the quality of the biological observations. To harmonize all classi-
fications across data sets and correct for potential deprecated scientific species names, we matched all taxonomic
information against the list of accepted taxon names of the World Register of Marine Species (WoRMS; Horton
et al., 2017). Observations lacking complete sampling metadata (date, depth, longitude, latitude, and abundance
value) and observations of body parts were removed (21,303 points for pteropods, mainly due to observations of
body parts and larvae, and 522 for foraminifers). Additionally, pteropod abundance values from the Ecosystem
Monitoring—Ships Of OPportunity surveys (EcoMon-SOOP) in the Gulf of Maine from the COPEPOD data
set were corrected by dividing them by a factor of 100 as the units in the original data set had been erroneously
reported (Hofmann Elizondo, 2022, Personal communication). We did not standardize the abundance estimates
between the various mesh sizes used in the different sampling cruises as there were not yet any published correc-
tion factors that we were aware of for these two specific plankton groups.

The final, quality-controlled pteropod abundance data set (Figure S2 in Supporting Information S1) contains
841,239 data points at 309,921 individual locations, collected at a mean sampling depth (+sd) of 38.15 + 190.89 m
over the 1938-2021 period (2001.25 + 15.23). Abundances range between 0ind/m? and 1,066.67 ind/m3, with a
mean of 4.38 + 79.86ind/m?. The median abundance (0.00ind/m?) is low due to the CPR data sets which make
up 91.15% of the data, and contain 92.06% absence observations. 50.19% of the data is resolved only to the
order-level, whereas 24.03% of the observations are species-resolved and 22.41% resolved to the genus level (see
Table S2 in Supporting Information S1). The data set contains observations on 33 species out of 165 currently
recognized pteropod species (Peijnenburg et al. (2020); see Table S2 in Supporting Information S1). The largest
contributions to total abundance summed over all observations stem from Limacina helicina sensu lato (47.7% of
the total species-resolved abundance), Heliconoides inflatus (26.7%), and L. retroversa s.1. (10.0%).

The final, quality-controlled foraminifer abundance data set (Figure S2 in Supporting Information S1) consists of
1,021,283 points at 308,641 unique locations, with a mean sampling depth of 108.06 + 340.49 m and collected
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Figure 1. Flow diagram illustrating the pipeline of numerical analyses implemented for the present study. The various steps taken from the raw data to the final total
carbon (TC) biomass distributions and total inorganic carbon (TIC) flux estimates using species distribution models (SDMs) are shown. The numbers in italics indicate
the subsection of the Methods where the corresponding step is described.
during the 1939-2021 period (mean 2000.36 + 13.30). Foraminifer abundances range between 0ind/m? and
152,170.00ind/m?, with a mean abundance of 3.63 + 163.08ind/m>. There is a high prevalence of CPR data
(74.35% of the total data) with 89.72% zero abundance observations, which causes a low median abundance value
of 0.00ind/m?3. 59.79% of the data are species resolved, followed by 33.07% of the observations on a phylum
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level (see Table S4 in Supporting Information S1). This data set contains observations on 42 of the 47 extant
foraminifer species (Schiebel & Hemleben, 2017). Most of the total abundance is composed of Globigerina
bulloides (25.6% of the total species-resolved abundance), Neogloboquadrina incompta (23.7%), Turborotalita
quinqueloba (13.3%), and Globigerinita glutinata (11.3%).

For model training, we performed additional data quality controls to ensure sensible relations between environ-
mental predictors and biomass values could be derived. The NA-NP CPR data set was flagged and discarded for
modeling as it contained discrete medians of abundance bins instead of continuous values (removal of 340,250
points for pteropods and 250,620 points for foraminifers). Additionally, we excluded data from neritic sampling
locations associated with a climatological salinity <30 PSU from the analysis to avoid observations influenced
by terrestrial freshwater and nutrient inputs (Brun et al., 2015; removal of 18,725 data points for pteropods and
17,207 points for foraminifers). Lastly, observations for pteropods from the clades Gymnosomata and Pseudoth-
ecosomata were removed for modeling, as only some of the latter are calcifiers (Lalli & Gilmer, 1989), and there
is very little literature on their role in the carbon cycle (removal of 106,929 points). The final data sets used for
modeling contain 375,336 points for pteropods and 770,663 points for foraminifers as shown in Figure 2.

2.1.2. Biomass Calculations

To estimate calcifying zooplankton biomass and subsequent carbon fluxes, we converted the abundances to biomass
data based on morphology-based conversion factors (cf. Figure 1). To this end, we grouped species of similar
morphology into shape groups and derived biomass as a function of average body size (maximum elongation)
based on shape-specific conversion equations. Generally, we applied all conversions on the lowest taxonomic level
available and only used shape-group or phylum-wise averages where the species identification was not available.

2.1.2.1. Biomass Calculation for Pteropods

To convert pteropod abundance into carbon biomass, we used corrected species-specific biomass conversion
equations from BednarSek, Mozina, et al. (2012) to calculate wet weight (WW) as shown in Table S1 in Support-
ing Information S1. These equations are based on six different morphological shape groups and relate an individ-
ual species' body length in millimeters to its biomass. For observations without morphometric data (99.8%), we
used the species-average lengths from BednarSek, Mozina, et al. (2012). We used pteropod shell length whenever
given in BednarSek, Mozina, et al. (2012), otherwise we used the body length values from the same source. Table
S2 in Supporting Information S1 shows the average length value used for each species, their respective shape
group, and the number of observations for each species. WW was then transformed to dry weight (DW) as per C.
S. Davis and Wiebe (1985):

DW =WW -0.28, M
and subsequently transformed to total carbon (TC) following Larson (1986):
TC =DW -0.25, @
Finally, total inorganic carbon (TIC) was computed following BednarSek, Mozina, et al. (2012):
TIC=027-TC. €

This TC-TIC conversion factor is based on data for L. helicina antarctica and hence probably not representative for
all pteropod species and life stages (Hofmann Elizondo & Vogt, 2022). To account for the lack of species-specific
TC-TIC conversion factors in literature, we added an uncertainty range of +20% to the conversion factor, based
on the range of TIC values reported in BednarSek, Tarling, et al. (2012). The effect of this parameter choice is
assessed according to the methodology in Section 2.3.4.

2.1.2.2. Biomass Conversion for Foraminifers

A morphological approach was carried out for converting foraminifer abundances to TC concentrations. We were
not aware of any published shape class definitions for foraminifers. Thus, we defined eight morphological shape
groups based on similar adult test shape and structure as shown in Table S3 in Supporting Information S1.

To derive biovolume-to-biomass conversion equations, we constructed species and group-specific maximum
test length to biomass functions from the literature. We collected species-specific test weight measurements per
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Figure 2. Global distribution of the final quality-controlled observations of pteropod (a) and foraminifer (b) abundance
used for modeling. The marginal plots show the density of observations and highlight the dominant role of the Southern
Ocean Continuous Plankton Recorder (SO-CPR) survey as well as a spatially confined, highly resolved data set in the North
Atlantic. This plot shows the data set used for modeling, that is, the data set after removing the North Atlantic and North
Pacific CPR data, coastal observations with surface salinity <30, and observations of naked pteropods (Gymnosomata) as

described above. For the full collected data set, see Figure S2 in Supporting Information S1.
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plankton size class from Schiebel and Hemleben (2000) and Takahashi and Bé (1984). We fitted linear functions
to calculate biomass as a function of length per species and per shape group, where the biomass of a shape group
is calculated as the average of all species within the group (Figure S3 in Supporting Information S1). To compare
the ranges of the conversion factors to published equations for the entire foraminifera phylum, we used the
equation provided by Michaels et al. (1995) (Figure S3 in Supporting Information S1). This function computes
foraminifer cytoplasm carbon (i.e., total organic carbon, TOC) as a function of test length. The TC biomass is
calculated based on the following conversion factors (Schiebel & Movellan, 2012):

TIC =0.36-TOC, 4
TIC =0.265-TC. ()

As for pteropods, we added an uncertainty range of +20% to the TIC-TC conversion factor to account for varia-
bility in calcification intensity associated with different species and environmental conditions.

To compute TC from the test weight measurements of Schiebel and Hemleben (2000) and Takahashi and
Bé (1984), we used the following molar relationship:

m(CaCO3) _ m(CaCOs»)

m(C) = M) = -
100.09 g mol

= ——— -12.01 -,
M (CaCO3) gmo (6)

where m denotes the mass and M the molar weight.

The biomass conversion factors (BCF) shown in Table S5 in Supporting Information S1 are the coefficients of
the linear relation between foraminifer TC biomass and their biovolume. To apply the conversion factors, the BCF
values were substituted into the following equation:

TC =ax L* % BCF, @)

where TC represents the TC biomass of foraminifers in pg, a denotes foraminifer abundance and L the species'
length in pm.

We collected average length values for all species from the images of Schiebel and Hemleben (2017). These
average length values as well as the number of observations per species can be found in Table S4 in Supporting
Information S1.

2.1.3. Surface Ocean Aggregation

To reduce spatio-temporal patchiness and noise in the data, we conducted a surface ocean aggregation (C. J.
O’Brien, 2015). To this end, we re-gridded all data onto the 1 X 1° grid of the World Ocean Atlas 2018 (WOA1S;
Boyer et al., 2018). For each grid cell, we summed all biomass concentrations from the same sampling event, as
different species were sometimes counted as separate measurements. Next, we averaged all biomass and abun-
dance values per grid cell and month of the year over the top 200 m. This depth cutoff was deemed reasonable as
99.1% and 99.4% of the summed abundance of pteropods and foraminifers, respectively, stem from the top 200 m
(Figure S4 in Supporting Information S1).

To better approximate a normal distribution, TC mass values were log-transformed with a log,(TC + 1) transfor-
mation for further analyses. Lastly, to dampen the effect of plankton patchiness and bloom dynamics, we flagged
outliers in the surface aggregated values based on the z-score criterion (Burba & Anderson, 2005). Hence, for
modeling, we excluded high biomass observations with a score of z > 3, that is, more than three standard devia-
tions away from the sample mean.

2.2. Modeling
2.2.1. Environmental Predictor Selection

To identify the set of predictors used for training the biomass-based SDMs, we collected gridded monthly clima-
tologies of meaningful environmental predictors as shown in Table 1 and Figure 1. Whenever necessary, the
fields were averaged and re-gridded to monthly climatologies at a 1 X 1° resolution. Depth-resolved predictors
from the WOA18 were averaged over the climatological mixed layer depth (MLD). As many pteropods actively
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Environmental Predictor Variables Used in the Univariate Predictor Evaluation
Predictor Source Reference
Temperature WOA18 Locarnini et al. (2018)
Chlorophyll-a SeaWiFs NASA OB.DAAC (2018a)
Mixed layer depth (MLD) SODA3.4.2 Carton et al. (2018)
Eddy kinetic energy (EKE) Copernicus Copernicus (2021)
Salinity WOA18 Zweng et al. (2019)
Dissolved oxygen WOAI18 Garcia et al. (2019b)
Nitrate WOA18 Garcia et al. (2019a)
Phosphate WOA18 Garcia et al. (2019a)
Depth of the euphotic layer (z,,) SeaWiFS NASA OB.DAAC (2018c¢)
Photosynthetically active radiation (PAR) SeaWiFS NASA OB.DAAC (2018d)
Particulate backscattering coefficient at 443 nm (BBP,,;) SeaWiFS NASA OB.DAAC (2018d)
Diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd,,,) SeaWiFS NASA OB.DAAC (2018b)
Total alkalinity (TA) OceanSODA-ETHZ Gregor and Gruber (2021)
Dissolved inorganic carbon (DIC) OceanSODA-ETHZ Gregor and Gruber (2021)
Partial pressure of CO2 (pCO,) OceanSODA-ETHZ Gregor and Gruber (2021)
Calcite saturation state (Q,) OceanSODA-ETHZ Gregor and Gruber (2021)
Aragonite saturation state (£2,,) OceanSODA-ETHZ Gregor and Gruber (2021)

Note. WOALS refers to the 2018 edition of the World Ocean Atlas (Boyer et al., 2018), SeaWiFS denotes the Sea-viewing Wide Field-of-view Sensor satellite data
(NASA OB.DAAC, 2018a) and SODA describes the Simple Ocean Data Assimilation project (Carton et al., 2018).

migrate vertically (on a daily or seasonal basis) and both groups are passively vertically mixed within the water
column (Lalli & Gilmer, 1989; Mackas et al., 2005; Myers, 1968; Schiebel & Hemleben, 2017; Wormuth, 1981),
the depth-averaged environmental predictors are more representative of the conditions they experience rather
than the surface values. However, as sampling devices are often towed vertically or obliquely, the reported water
depth interval of each observation is not directly representative of the depth where an organism dwells over
the entire day or even through its life span. Hence, we assume that pteropods and foraminifers move within
the mixed layer, where the majority of the organic matter is present (Sallée et al., 2021; Soviadan et al., 2022).
For all depth-resolved environmental predictors considered, the average over the top 200 m, the values at the
surface and the MLD-averaged predictor values are each correlated with a Pearson correlation coefficient of
r > 0.99, so this simplification is deemed reasonable. For dissolved oxygen concentration, we used the value at
200 m depth to avoid the strong collinearity with the sea surface temperature (SST) values. The distribution of
chlorophyll-a concentrations, nutrient variables, MLD, and eddy kinetic energy (EKE) were right-skewed (Figure
S5 in Supporting Information S1), therefore we log-transformed those variables so their distribution was closer
to a normal one to improve model performance and resilience. Then, we collocated the environmental parameters
with the gridded monthly pteropod and foraminifer biomass fields.

To select the most meaningful environmental predictors for the final biomass-based SDMs we used a multi-
step approach for each zooplankton group. First, we identified clusters of collinear predictors (Pearson correla-
tion coefficient Irl > 0.7 calculated from the values matched up with the monthly biomass climatologies, Brun
et al., 2020). Second, we excluded all but one predictor in each cluster, which improves model performance (Brun
et al., 2020; Dormann et al., 2013; Figures S6 and S7 in Supporting Information S1). Thus, for each cluster we
first chose the most normally distributed predictor as assessed by the Shapiro-Wilk test (Shapiro & Wilk, 1965),
and second, we chose predictors whose effect are easier to interpret from an ecological point of view (e.g.,
chlorophyll-a over Kd,q, the remotely sensed light attenuation at a wave length of 490 nm, which is an indirect
measure of surface productivity and turbidity). This selection procedure resulted in the following seven candidate
predictors for both foraminifers and shelled pteropods: surface chlorophyll-a, MLD, temperature averaged over
the MLD, surface EKE, oxygen at 200 m depth, salinity averaged over the MLD, partial pressure of CO, (pCO,),
photosynthetically active radiation (PAR), and particulate backscattering coefficient at 443 nm (BBP,,;,).
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The exclusion of a predictor variable does not mean that it is not ecologically relevant for the organisms modeled.
The calcite and aragonite saturation states are known to influence habitat suitability for foraminifers and pter-
opods, respectively (Bednarsek et al., 2016, 2022; Lischka et al., 2011; Lischka & Riebesell, 2012; Manno
et al., 2016). However, the matched saturation states were determined to be highly correlated with water temper-
ature averaged over the MLD (Pearson r > 0.99). As previous studies have shown temperature to be more biolog-
ically relevant in influencing large-scale biogeographic distribution patterns (Beaugrand et al., 2013; BednarSek
et al., 2018; Howes et al., 2015; MacKas & Galbraith, 2012), we excluded the saturation states as predictors.
Exchanging temperature for the aragonite saturation state in the pteropod models does not have a significant
effect on the biomass distribution pattern or the annual TC fluxes (Figure S8 in Supporting Information S1).

To choose the final predictor set, we assessed the variance of the TC biomass explained by each of the seven
candidate predictors using univariate regression models (Figure S9 in Supporting Information S1). For this, we
calculated both 1° pixel-wise and latitudinal 10°, 5°, and 1° monthly means of the TC biomass and the environ-
mental predictors to identify the large-scale effects of the environmental predictors. To model variations in the
TC biomass as a function of each environmental predictor, we trained two Generalized Linear Models (GLMs)
with a Gaussian response function (one with only a linear term and the second with both a linear and a quadratic
term) and a Generalized Additive Model (GAM) with a cubic regression spline. Then, we assessed the percentage
of deviance explained by each predictor (Hosmer Jr et al., 2013; Nelder & Wedderburn, 1972). We retained all
predictors that explained >5% of variability at any of the spatial aggregation levels. For pteropods, the resulting
set of predictors included: MLD-averaged temperature, surface chlorophyll-a, and MLD. For foraminifers, we
retained the MLD-averaged temperature, surface chlorophyll-a, and EKE (Figures S9 and S10 in Supporting
Information S1 for mean annual maps of the predictors).

To assess the impact of this predictor selection procedure on SDM outputs, we also trained the models for
both plankton groups on a Principle Component Analysis (PCA) transformation of the full initial predictor set
(Table 1). There was no significant difference between the PCA-based global annual TIC fluxes and those calcu-
lated based on our final choice of predictors (p > 0.05 for both plankton types as assessed with a Kruskal-Wallis
test (Kruskal & Wallis, 1952), see Figure S11 in Supporting Information S1). This shows that the selected predic-
tors are sufficient to represent the full set of predictors.

2.2.2. Multivariate Modeling

We used the identified predictors to train an ensemble of five SDMs of increasing complexity: a GLM, a GAM,
a Random Forest (RF), a Gradient Boosting Machine (GBM) and a Neural Network/Deep Learning Model
(DL; see Figure 1). GLMs, GAMs and RFs have been widely and successfully used in the modeling of global
marine plankton distributions (Benedetti et al., 2021; Brun et al., 2016; Righetti et al., 2019). The more complex
models have also been used for modeling plankton distributions, though less frequently (GBMs in Pinkerton et al.
(2010, 2020), DL models in Benedetti et al. (2021); C. J. O’Brien et al. (2016)). For an extensive description of
the more complex model types, we refer to Boehmke and Greenwell (2019a, 2019b, 2019¢) and sources within.
All modeling was conducted with the h20 3.36.0.3 R package (H20.ai, 2021).

For the GLM, we included both first and second-order dependencies on the predictors and assumed a normal
distribution of the target variable with an identity link function (Nelder & Wedderburn, 1972). In the GAM,
we fitted smoothing terms for all predictor variables using cubic regression splines, the most common smooth-
ing algorithm (Hastie & Tibshirani, 1990), and a normal distribution with the identity function as link for the
target variable. For the RF, GBM, and DL, the hyperparameters were tuned using a grid search (Boehmke &
Greenwell, 2019d). Tables S6, S7, and S8 in Supporting Information S1 show the grid of parameters evaluated
for each model. The final setup of the RF as determined from the tuning process (Table S6 in Supporting Infor-
mation S1) included 830 trees for pteropods and 330 for foraminifers. At each tree node, one and two environ-

mental predictors were evaluated (m,_ ) for pteropods and foraminifers, respectively, and the minimum number

try
) was set to three and two. The maximum tree size was constrained to 30 for
) of 0.8 and

0.632 of the total data set. For the GBM, we determined a maximum depth (max,,,,, = 5) and minimum number

of rows at each final node (min

rows:

pteropods and 10 for foraminifers. For each bootstrap replicate of the tree, we chose a fraction (.

of observations per terminal node (min_ = 1) for each individual tree for both plankton groups (see also Table

S7 in Supporting Information S1). The learning rate (7,,,,,) wWas determined to be 0.01 and each individual tree is
trained on a fraction of 0.75 and 0.5 of the total data set for pteropods and foraminifers, respectively, using all of

the predictor columns (7., iccotumns

). The DL (see also Table S8 in Supporting Information S1) was determined to
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have a Tanh activation function for both plankton groups. The pteropod model has two hidden layers with 20
neurons each and the foraminifer model has two hidden layers of 15 neurons each. To avoid overfitting, L, and L,
regularizations were included (Boehmke & Greenwell, 2019a) with weight factors 4, = 0and 4;, = 1 * 1073 for
pteropods, and A;, = 1 + 10~ and A, = 1 * 107 for foraminifers.

We assessed the effect of the hyperparameter tuning on the global annual TIC fluxes by comparing the fluxes
calculated using the tuned models (for the RF, GBM, and DL) to those based on the untuned models with standard
hyperpameter set-up (see Tables S6-S8 in Supporting Information S1). As expected, the tuned models showed a
better model performance, but the global annual TIC fluxes did not differ significantly (p > 0.05 as assessed with
a Kruskal-Wallis test (Kruskal & Wallis, 1952) for each plankton group), which points to a more accurate spatial
representation of the patterns in the tuned models. Tuning the models hence does not introduce unfounded model
complexity or biases.

To train the SDMs and assess their performance, we split the data set into a training and a testing set (Boehmke &
Greenwell, 2019d). For a conservative estimate of model performance, we randomly assigned 75% of the values
to the training data set. On the training data set, we performed a 5-fold cross validation, where we (a) split the
training data set into five equally sized, randomly chosen, non-overlapping subsets, (b) train the SDMs on four
of the subsets, and (c) evaluate the model performance of the trained SDM on the remaining subset based on the
average root mean squared error (RMSE). This procedure was repeated until each of the five subsets of the data
were used four times for training and once for validation. Finally, we evaluated the trained SDM on the testing set.

2.2.3. Model Performance

We assessed model performance using three metrics (Figure 1). The root mean squared error (RMSE) is an error
metric estimating the deviation between predicted and true values. Pearson's coefficient of correlation, R? indicates
the magnitude of correspondence between trends in the predicted and observed values. Finally, the Nash-Sutcliffe-ef-
ficiency (NSE; Nash & Sutcliffe, 1970) compares the model performance to a null model, that is, the mean of all
observations. Positive NSE values indicate that the assessed model performs better than the null model. Each
performance metric was calculated on both the training and the testing set of the data (cf. Section 2.2.2).

2.3. Model Inference
2.3.1. Global Total Carbon (TC) Biomass Patterns

We used the SDMs to project global monthly TC biomass values as a function of the monthly climatological envi-
ronmental predictors (see Figure 1). Projections were made for each grid cell and month where environmental data
were available. We flagged and excluded all predictions of negative biomass values, because they correspond to
unrealistic predictions (0.33% of all predicted values for pteropods and 0.06% for foraminifers). Many complex
SDMs suffer from low transferability into novel environmental conditions due to non-linear response curves (Bell
& Schlaepfer, 2016; Elith et al., 2010; Qiao et al., 2019). Thus, for each grid cell we evaluated whether the envi-
ronmental conditions lie within the range of the training data set or are considered non-analog using a Multivariate
Environmental Similarity Surfaces (MESS) analysis (Elith et al., 2010). The MESS analysis assesses the similarity
between the environmental conditions at any given point and the training data set of each SDM. To avoid including
unrealistically high values in the flux calculations and global summaries of calcifying zooplankton biomass, we
excluded the biomass values from regions where non-analog environmental conditions were detected by the MESS
analysis (3.25% of the values for pteropods and 4.03% for foraminifers). To analyze the spatial biomass patterns, we
defined hotspots as unusually high biomass concentrations that lie above the 90th percentile for each plankton group.

2.3.2. Annual Total Inorganic Carbon (TIC) Export Fluxes

We computed TIC fluxes from the projected global TC biomass values and environmental conditions (see
Figure 1). To compare our results to those of Buitenhuis et al. (2019), biomass values were calculated for TC,
while export fluxes were based only on the inorganic shells, that is, on TIC. Hence, we assumed that the carbon
export flux is dominated by the sinking and empty shells.

2.3.2.1. TIC Export Flux Calculation for Pteropods

To compute the annual pteropod TIC flux, we applied a simplified approach based on an average overturn time
of 1 year, following the methodology of BednarSek, Mozina, et al. (2012). Based on grid cell-wise mean annual
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biomass concentrations, we computed the global annual mean biomass as the spatially weighted mean of the aver-
age concentrations of each grid cell, multiplied by the TIC-TC factor (BednarSek, Mozina, et al., 2012), the depth
of 200 m, and the global open ocean area excluding shelf seas (362#10° km?; BednarSek, Mozina, et al., 2012;
Dietrich et al., 1975). To represent the variability and uncertainty in turnover times between various pteropod
species and regions, we added an uncertainty factor of £20% to the flux conversion equation based on the range
of values given in the review study by Wang et al. (2017). The effect of this parameter choice is evaluated accord-
ing to the uncertainty analysis described in Section 2.3.4.

2.3.2.2. TIC Export Flux Calculation for Foraminifers

To calculate foraminifer TIC fluxes, we used the phylum-resolved temperature-dependent growth rates from
Lombard et al. (2009). To calculate annual TIC fluxes, we multiplied the daily growth rate at each grid cell and
month by the current biomass concentration, the TIC-TC factor (Equation 4 in Section 2.1.2), and the depth of
200 m, and weighted the result by grid-cell area. To represent uncertainty in the growth rate, we calculated the
minimum and maximum growth rates by computing all combinations within the parameter uncertainty range.
Then, we chose those parameter combinations that would minimize or maximize the integral of the growth rate
as a function of temperature from 0° to 30°C, while maintaining ecologically sensible response shapes (see Figure
S12 in Supporting Information S1 for an illustration of the growth rate options). The effect of this choice was
evaluated according to the methodology described in Section 2.3.4.

2.3.3. Environmental Predictor Analysis

To examine how underlying ecological processes were captured by the SDMs (Figure 1), we assessed the models'
dependence on the predictor variables in two ways. First, we assessed the overall effect of each environmental
predictor based on a permutation analysis using the Fisher-Yates algorithm (Fisher & Yates, 1953). Second, we
characterized the biological relevance of the response curve learned by each SDM using partial dependence
plot (PDP) curves. The PDP curves were calculated by computing biomass predictions at 25 evenly spaced
points across each predictor's range while keeping all other predictors constant at their mean value (Boehmke &
Greenwell, 2019c¢).

2.3.4. Uncertainty Quantification

We assessed the three main sources of uncertainty underlying our SDMs predictions: SDM choice (Thuiller
etal., 2019), TIC-TC factor, and growth rate parametrization (Figure 1). First, we identified potential non-normal
relationships based on the patterns of the model residuals. Second, we quantified the effect of different model
and parameter choices (see Sections 2.1.2,2.2.2 and 2.3.2 for details on the uncertainty setup) on the carbon flux
predictions using a multivariate Analysis of Variance (mANOVA; Weinfurt, 1995) whose target variable was
the monthly TIC flux values at each grid cell. We used the model type, the growth rate definition, the TIC-TC
conversion factor, and the interactions between these three factors as input for the mANOVA.

3. Results
3.1. Global Biogeographic Total Carbon (TC) Biomass Patterns

The global mean annual TC biomass (+sd) is 0.701 + 0.648 mg TC m~3 for pteropods, and 13.5 + 28.7 ug TC m—3
for foraminifers, implying that pteropod biomass is a factor of ~50 larger than foraminifer biomass. The projected
global mean biomass patterns are shown in Figures 3a and 3b for pteropods and foraminifers (see also Figures
S13 and S14 in Supporting Information S1 for the projected patterns per SDM). For both plankton groups, high
biomass concentrations are found in the tropics and at latitudes >50°N. Lower biomass concentrations (mean
values of 0.31 mg TC m~ and 5 pg TC m~3) are found between 40° and 50°S for pteropods and between 30° and
40° in both hemispheres for foraminifers. Contrary to pteropods, we find high biomass concentrations of up to
880 pg TC m~3 for foraminifers in the Southern Ocean south of 50°S.

On a regional scale, the North Atlantic Ocean is associated with biomass hotspots (values above the 90th percen-
tile) for both plankton groups, but particularly for foraminifers. A trail of high foraminifer biomasses with a
mean value of 150 pg TC m~3 is found across the North Atlantic. Other regions of high biomass are associated
with tropical and coastal upwelling systems. Pteropod biomass concentrations are particularly high in the coastal
Eastern Boundary Upwelling Systems (EBUS) with an average concentration of 3 mg TC m~3. For foraminifers,
regions of high biomass are associated with the equatorial upwelling region.
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Figure 3. Global mean annual total carbon (TC) biomass concentration for pteropods (left, a) and foraminifers (right, b), averaged over all months and models.
Values are shown as log,,(TC + 1), note also the different color scales for pteropods and foraminifers. Stippled regions in plots a—d indicate grid points where the
environmental conditions were outside the training data set for more than 6 months of the year as calculated with the Multivariate Environmental Similarity Surfaces

(MESS) analysis. The lower panel plots ¢ and d show the mean annual relative standard deviation of the model predictions for pteropods (left) and foraminifers (right),
normalized with the mean prediction value at each grid point to facilitate comparability.

On a seasonal scale, biomass hotspots shift toward high latitudes during global summer (Figures S15 and S16
in Supporting Information S1). The seasonal variation in biomass V for each grid point and model is defined as
the difference between the maximum and minimum monthly surface ocean biomass concentration at that point.
On average, V is stronger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH) with a differ-
ence in variability (Vg — Vgp) of +0.73 mg TC m~2 for pteropods and of +45.59 g TC m~3 for foraminifers
(p < 2%107'6 for both groups using a t-test; Student, 1908). Foraminifers display a higher seasonal variation than
pteropods (+0.28, p < 2*107'® when comparing the maximum seasonal variation at each grid point normalized
by the mean global biomass between the plankton groups with a r-test).

3.2. Model Performance

To assess model performance of the five SDMs, we evaluated each model using the root mean squared error
(RMSE), the R? and the Nash-Sutcliffe-Efficiency (NSE) as shown in Table 2 for both plankton groups. Compared
to the GLM and GAM, the more complex model types (RF, GBM, and DL) have a lower RMSE, a higher R?, and
a higher NSE, that is, they generally perform better across all three metrics (Table 2, see also Section 2.2.3 for
a description of the metrics). For both pteropods and foraminifers, the RF performs best, followed by the GBM.
However, the GBM's R? is significantly higher on the training set than on the testing set, which indicates model
overfitting. The same pattern is visible for the RMSE (Table 2). In contrast, the RF achieves similar performances
on the training an testing set, which indicates a robustly high performance. All model types perform better than
using the mean observation value as prediction, which is indicated by the positive NSE values (Table 2). Compar-
ing the R? values between the plankton groups shows that the pteropod models generally perform better and can
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Model Performance for the Pteropod and Foraminifer Models
Model R, R, RMSE,,  RMSE,,  NSE,,  NSE,, Ranking
Pteropods GLM 0.1113 —0.6427 0.2612 0.3633 0.1113 0.1442 5
GAM 0.1299 0.1678 0.2585 0.2586 0.1299 0.1678 4
RF 0.2332 0.2805 0.2408 0.2404 0.5581 0.2805 1
GBM 0.409 0.2674 0.2114 0.2426 0.3652 0.2674 2
DL 0.1597 0.1822 0.2521 0.2563 0.1625 0.1822 3
Foraminifers GLM 0.0503 —0.0279 0.8554 0.8789 0.0503 0.0491 5
GAM 0.1116 0.0823 0.8274 0.8304 0.1116 0.0823 4
RF 0.2424 0.2003 0.7586 0.7752 0.4252 0.2003 1
GBM 0.3999 0.1926 0.6751 0.7789 0.3594 0.1926 2
DL 0.1718 0.1367 0.7931 0.8054 0.1780 0.1367 3

Note. Each model metric was calculated on both the training set (X,,;,) and the testing set (X,,.,). R? ranges from —oo to +1,

with a perfect fit of the model and full variance explained indicated by a value of +1. The root mean squared error (RMSE)
is an error measure, hence smaller values show higher accuracy. The Nash-Sutcliffe-efficiency (NSE) indicates improvement
of the model predictions over using the observation mean, with perfect model performance indicated by a value of +1
and a value of 0 indicating that the models perform no better than the observation mean. The models are ranked by their
performance over the five metrics, where rank 1 refers to the best performing model and rank 5 to the lowest performing one.

explain a higher fraction of the biomass variability (Table 2). For the complex non-parametric models (RF, GBM,
DL), R? is not an optimal metric (Spiess & Neumeyer, 2010). However, as it is frequently reported in plankton
studies as a measure of the fraction of variance explained (Zurell et al., 2020; Pinkerton et al., 2010, 2020), we
chose to still include it.

All models tend to underestimate the total biomass on a global scale (—35% for pteropods and —5% for foramini-
fers of log-transformed biomass), with a stronger underestimation of the top 10th percentile biomass hotspots (on
average —78% for pteropods and —53% for foraminifers). However, this underestimation is less pronounced in the
more complex models (Figures S17 and S18 in Supporting Information S1). On a basin-scale, highly productive
regions are generally underestimated and low productivity areas overestimated with an average overestimation of
the lowest 50% of log-transformed biomass by a factor of 8.7 for pteropods and a factor of 2.5 for foraminifers.
Hence, biomass concentrations of both plankton groups are underestimated in the North Atlantic Ocean and the
tropical Pacific and Atlantic, whereas predictions in the Indian Ocean and the region around Australia are on
average too high (Figures S17 and S18 in Supporting Information S1).

3.3. Environmental Covariates

In general, the modeled responses of biomass to the fitted predictors converge across the ensemble members,
except near the outer ranges of the predictor values, and for EKE (Figure 4). Temperature shows an overall
positive relation to pteropod biomass and a bimodal relation for foraminifer biomass with peaks around 5° to
7°C and above 25°C. Chlorophyll-a is positively related to both pteropod and foraminifer biomass. At high
chlorophyll-a concentrations (Chl-a >1 mg m~3), biomass concentrations stagnate for pteropods and decrease
slightly for foraminifers. MLD has a negative parabolic relation to pteropod biomass. A deepening of the mixed
layer up to a maximum of 30 m depth is associated with a decrease in biomass while a further deepening of the
MLD relates to an increase in biomass concentrations. The effect of EKE on foraminifer biomass varies across
the models, with a strong positive effect in the simpler GLM and GAM, a near neutral effect in the RF and GBM,
and a negative influence in the DL (see Figure 4).

3.4. Global Annual Total Inorganic Carbon (TIC) Export Fluxes

Global mean annual biomass standing stocks are 52.2 Tg TC (ranging from 49.2 to 57.3 Tg TC across SDM
types) for pteropods and 0.9 Tg TC (0.6 to 1.1 Tg TC) for foraminifers (Table 3).

The corresponding global annual TIC fluxes were calculated based on growth rate parametrizations (Section 2.3.2)
and are on average 14.1 Tg TIC yr~! (13.3 to 15.5 Tg TIC yr~! for the standard TIC-TC conversion rate and growth
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Figure 4. Partial dependence plots (PDP) for the environmental predictors in the pteropod (a) and foraminifer (b) models. The curves indicate the relations learned
by the different SDMs and the rug on the x- and y-axis represents the distribution of the training data. MLD refers to the mixed layer depth, EKE to the eddy kinetic
energy. The different model types are the Generalized Linear Model (GLM), Generalized Additive Model (GAM), Random Forest (RF), Boosted Regression Tree

(GBM) and Neural Network (DL).

Table 3

Global Mean Annual Surface Pteropod and Foraminifer Total Carbon (TC)
Biomass Standing Stocks and Annual Total Inorganic Carbon (TIC) Flux
Estimates as Calculated by the Five Species Distribution Model (SDMs)

Pteropods Foraminifers
Standing Standing

stock Carbon flux stock Carbon flux
Model (Tg TC) (Tg TICyr~1) (Tg TC) (Tg TICyr—1)
GLM 49.2 13.3 (8.5-19.1) 0.6 8.9 (4.0-16.4)
GAM 49.2 13.3 (8.5-19.1) 0.7 8.5 (3.0-19.0)
RF 57.3 15.5(9.9-22.3) 1.0 14.2 (5.0-26.8)
GBM 56.9 15.4 (9.8-22.1) 1.1 13.2 (4.8-24.7)
DL 483 13.1 (8.4-18.9) 1.1 9.8 (3.7-20.3)
Average 52.2 14.1 0.9 10.9

Note. The uncertainties shown in parentheses for the TIC fluxes correspond
to the minimum and maximum flux values derived from the range of TIC-TC
conversion factors and growth rate parametrizations used.

rate setup; Table 3) for pteropods. Foraminifer TIC fluxes amount to on aver-
age 10.9 Tg TICyr~! (8.5 to 14.3 Tg TICyr~!; Table 3). The inter-SDMs
range of the TIC fluxes increases by a factor of approximately 4-5 if the
modeling uncertainty associated with the TIC-TC factor and the growth rate
parametrization are included (Table 3, see also Section 3.5).

3.5. Uncertainty Quantification

To assess the effects of SDM choice, growth rate parametrization and
TIC-TC factor parametrization on the TIC flux predictions, we conducted
a mANOVA and evaluated spatial patterns of standard deviation between
model predictions. The main sources of variability in global mean annual
TIC fluxes differ between the plankton groups (Figure S19 in Supporting
Information S1). For pteropods, the growth rate and TIC-TC conversion
factor choice are the major sources of uncertainty, as each explains 27% of
the variability. SDM choice explains 10% of the variability in fluxes for pter-
opods. In contrast, the TIC flux variability for foraminifers is dominated by
the parametrization of the foraminifer growth rate (71%), followed by the
model choice (11%), and the TIC-TC factor (<10%).

From a spatial point of view, relative inter-SDMs variability is highest in
regions of low productivity and where environmental conditions are outside
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the range of the training data set (Figure 3, panels C and D). This encompasses the Southern Hemispheric (SH)
oceanic gyres and the low-productivity latitudinal band around 45°S for pteropods and around 30°S for foramini-
fers. Absolute biomass predictions differ the most in regions of high biomass, that is, mainly the North Atlantic
for both groups (Figure 3, panels A and B).

4. Discussion
4.1. Biogeographic Biomass Patterns

The biogeographic distribution patterns found for pteropods and foraminifers largely agree with previous find-
ings (BednarSek, Mozina, et al., 2012; Buitenhuis et al., 2019; Lalli & Gilmer, 1989; Lombard et al., 2011;
Schiebel, 2002). We found high biomass concentrations for both plankton groups in the warm tropical waters, at
the high northern latitudes and in the upwelling systems.

The global warm-water belt around the equator has previously been identified as a region of high biomass for pter-
opods (BednarSek, Mozina, et al., 2012; Burridge et al., 2017; Lalli & Gilmer, 1989) and foraminifers (Schiebel &
Movellan, 2012). High biomass concentrations in the equatorial region for the two plankton groups are represent-
ative of total global mesozooplankton distribution patterns (Moriarty et al., 2013; Stromberg et al., 2009), which
also show peaks in the tropical ocean.

Earlier studies also found the high latitudes to be regions of high biomass for both plankton groups (Bednarsek,
Mozina, et al., 2012; Hunt et al., 2008; Lalli & Gilmer, 1989; Schiebel & Movellan, 2012). Contrary to previ-
ous studies (BednarSek, Mozina, et al., 2012; Hunt et al., 2008; Lalli & Gilmer, 1989), the Southern Ocean was
not identified as a region of major pteropod productivity in our study. This is likely due to the influence of the
SO-CPR data set, which included a high fraction (95.8%) of absences. Removing all CPR data from our training
data set (i.e., SO-CPR and Aus-CPR) significantly increases biomass concentrations for pteropods by a factor
of 4-8 in the Southern Ocean but not in other basins (Figures S20 and S21 in Supporting Information S1).
However, removing the CPR data also leads to significantly less well constrained PDP curves for low tempera-
tures, which increases the uncertainty of these CPR-depleted SDMs projections. As previous studies were based
on much fewer and spatially confined observations in the Southern Ocean (e.g., 141 data points south of 60°S
in BednarSek, Mozina, et al., 2012), it is possible that they constitute local upper bound estimates of pteropod
abundance and biomass in the Southern Ocean.

Similar to our findings, upwelling regions have previously been associated with high abundances of pteropods
(Burridge et al., 2017; Dadon & Masello, 1999; Koppelmann et al., 2013; McGowan, 1967) and foraminifers
(Ivanova et al., 1999; Naidu & Malmgren, 1996; Schiebel et al., 2004). Upwelling systems are characterized by
recurrent nutrient inputs that trigger high local primary productivity (Kdmpf & Chapman, 2016), and thus opti-
mal conditions for opportunistic foraminifer and pteropod species (Kucera, 2007; Schiebel & Hemleben, 2017).
However, the upwelling systems are also associated with the upwelling of low pH waters (Hauri et al., 2013; Joint
et al., 2011), and the shoaling of the calcite and aragonite saturation horizon (Frenger et al., 2018; Leinweber &
Gruber, 2013), with potentially deleterious effects.

4.2. Environmental Drivers

In agreement with other studies (Beaugrand et al., 2013; Jentzen et al., 2018; Meilland et al., 2016; Pinkerton
et al., 2020), temperature was the strongest statistical covariate for the biomass distributions of pteropods and
foraminifers in our study. This is not surprising since temperature influences all scales of biological processes,
from intra-cellular reaction rates to species interactions (Brown et al., 2004; Chapperon & Seuront, 2011; Kirby &
Beaugrand, 2009; Schmidt-Nielsen, 1997). Temperature is also related to the water column stratification, which
in turn can affect plankton biomass by influencing nutrient availability (see Section 2.2.1) and primary produc-
tivity (Chiswell et al., 2014). The present global dependencies of biomass on temperature can differ from the
results of local studies (e.g., a negative dependency of pteropod biomass on temperature as found in BednarSek
et al. (2022) and species-specific responses of foraminifers to a range of environmental parameters as found by
Weinkauf et al. (2016)), as our models capture large-scale climatological effects contrary to local models which
reflect physiological responses to environmental gradients on a much smaller scale. Such scale-dependent effects
of environmental drivers on biogeographic patterns are common in macroecology (Thuiller et al., 2015), but
remain to be investigated for marine taxa.
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The modelled bimodal structure of the biomass dependency of our SDMs on temperature for foraminifers, and—
to a lesser extent—pteropods (peaks around 5°-7°C and above 25°C; Figure 4), likely reflects the existence of
distinct assemblages of warm-water species and cold-water species within these groups (Bradshaw, 1959). Some
foraminifer species are associated with one end of the temperature spectrum—for instance, Neogloboquadrina
pachyderma is associated with temperatures below 10°C and Globigerinoides ruber (white) with temperatures
above 18°C (Kucera, 2007; G. A. Schmidt & Mulitza, 2002), which broadly matches our identified peaks (Antell
et al., 2021; Morard et al., 2015; Rillo et al., 2022). Furthermore, the temperature interval around 17°C consti-
tutes a minimum in the foraminifer biomass dependency curve and it can be associated with the subtropical front
(D. N. Schmidt et al., 2004). As very dynamic dispersal barriers, fronts are regions of significant environmental
variability where foraminifer body sizes were found to be significantly smaller (D. N. Schmidt et al., 2004). This
could help explain why the subtropical front was associated with lower foraminifer biomass. However, most
foraminifer species display wide thermal tolerances of around 10°C (Schiebel & Hemleben, 2017). Additionally,
the sampling density was high in the cold regions of the Southern Ocean and at high temperatures in the tropics,
but few data points (18.0% for pteropods and 23.1% for foraminifers) stem from the intermediate temperature
range between 10°C and 20°C for both plankton groups. Hence, the bimodal structure might also be skewed due
to an uneven sampling distribution (as seen in the uneven density of the x-axis rug plot in Figure 4a).

In our SDMs, surface chlorophyll-a concentration emerged as the second-most important environmental covariate
for the biomass of both plankton groups, which is also supported by the literature (Meilland et al., 2016; Pinkerton
et al., 2020; Schiebel et al., 1995, 2001). Generally, a positive near-linear relationship between chlorophyll-a
concentrations and pteropod and foraminifer biomasses is observed, particularly in the well-constrained range
of the PDP curve (Figure 4). As a measure of food availability, chlorophyll-a can be directly positively linked
to zooplankton abundances and biomass (Pinkerton et al., 2020; Schiebel et al., 2001; Stromberg et al., 2009).
However, both pteropods and foraminifers also feed on non-phytoplankton prey and organic particles to varying
degrees (Caron & Bé, 1984; Lalli & Gilmer, 1989; Rhumbler, 1911; Spindler et al., 1984). Pteropods typically
feed on particles that are one 100-1000th of their own size (Conley et al., 2018), while some foraminifers can
digest prey larger than themselves (Schiebel & Hemleben, 2017). This can explain the smaller-scale deviations of
the PDP curves from the near-linear trend and a certain decoupling at low chlorophyll-a concentrations (Figure 4)
as the zooplankton can feed on alternative organic particles.

The overall importance of the environmental variables driving biomass in models may vary with the
spatio-temporal scale at which the analysis is conducted (Corney et al., 2006). Both MLD and EKE were found to
be of minor importance as driving variables in our SDMs, which might be due to their predominantly mesoscale
effect on mixing and food availability. MLD negatively influences pteropod biomass concentrations over most of
the assessed range (Figure 4). As flux-feeders, pteropods rely on a steady downward flux of particles, which can
be hindered by a deep and turbulent water column mixing (Tsurumi et al., 2005). From a viewpoint of ecolog-
ical successions over seasons, the shoaling of the deep winter mixed layer in spring is one of the main factors
triggering spring phytoplankton blooms (Chiswell et al., 2014). Following these blooms, zooplankton abundance
increases as the zooplankton feed on the phytoplankton (Romagnan et al., 2015). This temporal succession might
explain the increase in pteropod biomass for shallow MLD values as an indirect consequence. EKE shows a slight
positive impact on foraminifer biomass in the simpler models (Figure 4). At the mesoscale, eddies can sustain
increases in foraminifer biomass, as they can drive the mixing of the deep chlorophyll-a maximum into shallower
surface layers, that is, into the habitat of foraminifers (Beckmann et al., 1987; Fallet et al., 2011; Kupferman
et al., 1986; Schiebel et al., 1995; Steinhardt et al., 2014; Turner, 2015). However, the effect of eddies varies as
their direction of rotation determines the dominant vertical direction of water movement (Dufois et al., 2016).
The direct large-scale effects of MLD and EKE on biomass patterns are not frequently assessed in the literature
(exceptions for MLD are Pinkerton et al. (2020) and Schiebel et al. (2001)). On a local, short-term scale, however,
they might have a strong influence on zooplankton biomass that cannot be captured by our global-scale, 1 X 1°,
monthly model.

Previous work identified carbonate chemistry as an important predictor for net calcification on a local scale
(Bednarsek & Ohman, 2015; Bednarsek et al., 2022; Lischka et al., 2011; Manno et al., 2017; Mekkes, Renema,
et al., 2021). CO,-rich waters characterized by low pH, low calcite, and low aragonite saturation states may
negatively affect certain calcifying organisms by increasing their dissolution and lowering their calcifica-
tion rate (BednarSek, Feely, et al., 2017; BednarSek et al., 2022; Mekkes, Renema, et al., 2021; Mekkes,
Sepilveda-Rodriguez, et al., 2021). For pteropods, these changes in water chemistry can reduce their metabolic
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activity, increase shell dissolution, and decrease their growth and survival (BednarSek et al., 2016; BednarSek
et al., 2022; Bednarsek, Feely, et al., 2017; BednarSek, Klinger, et al., 2017; Gardner et al., 2017; Lischka
et al., 2011; Lischka & Riebesell, 2012; Maas et al., 2015; Manno et al., 2007). Foraminifers are less sensitive to
changes in saturation states as their shells are made of calcite (Orr et al., 2005; Weinkauf et al., 2016), but labora-
tory and field studies point to reduced calcification rates and metabolic depression for them as pH decreases (C.
V. Davis et al., 2017; Iwasaki et al., 2019; Moy et al., 2009; Osborne et al., 2020), even though calcite saturation
states are higher than aragonite saturation states. As our statistical models, by design, did not include any indica-
tor of organism physiology or biomineralization and were based on climatological environmental conditions, we
could not account for such effects in the way that for example, equation-based numerical models with an explicit
representation of organismal physiology, such as individual-based models do (Hofmann Elizondo & Vogt, 2022).
Based on field studies, changes in carbonate chemistry have not been shown to cause large-scale abundance
decreases of either pteropods or foraminifers (Howes et al., 2015; Ohman et al., 2009; Thibodeau et al., 2019).
Nonetheless, in combination with thermal stress, decreased saturation states were shown to negatively affect
population sizes on regional scales (Bednarsek et al., 2022). Such combined effects cannot be resolved with our
approach as highly correlated predictors must be removed from our models. Furthermore, the fitness reduction of
individual organisms leads to delayed responses on the population level, such that large-scale changes detectable
by our models may happen only in the near future under climate change (BednarSek et al., 2022).

Overall, the relative importance and response curves shapes (Figure 4 and Figure S22 in Supporting Informa-
tion S1) of the various environmental predictors are in line with our current state of knowledge. Some response
curves are affected by uneven sampling across environmental and geographic space and scale dependencies, but
within the most commonly observed ranges of environmental conditions, the response curves of the five SDMs
agree well with each other for both plankton groups.

4.3. Current Global Surface Ocean Biomass and TIC Export Fluxes

Estimates of global plankton standing stocks from observations have only become possible during the past decade
(Buitenhuis, Vogt, et al., 2013) due to paucity in the available information about marine ecosystems. Hence,
there are still large uncertainties, particularly for organisms such as zooplankton with patchy abundance patterns
(Buitenhuis, Hashioka, & Quéré, 2013) and strongly uneven sampling distributions and methodologies (see also
Section 4.4 and Figures S23 and S24 in Supporting Information S1 for an assessment of data patchiness). Esti-
mates of standing stocks are highly uncertain, though less so than in marine systems than terrestrial ones (Bar-On
et al., 2018; de Garidel-Thoron et al., 2022). In this context, we deem the partly large deviations of our estimates
from previous studies as plausible.

On a global mean annual scale, our estimates of total plankton biomass standing stocks are a factor of 10
lower than previous MAREDAT observation-based estimates for pteropods (BednarSek, Mozina, et al., 2012)
and in the same range for foraminifers (Schiebel & Movellan, 2012) as shown in Table 4. For both plankton
groups, the previous standing stock estimates were (a) calculated using globally averaged, unweighted biomass
concentrations, (b) based on a spatiotemporal subset of our current observational data set, and (c) based only on
non-zero abundance observations.

The discrepancy between our results and those of previous studies decreases when we calculate global standing
stocks based on these different configurations (see Table 4). Calculating standing stocks based on (a) MAREDAT
methodology does not change the standing stock estimates strongly (46 to 57 Tg TC for pteropods and 0.5 to
1.1 Tg TC for foraminifers). Additionally (b) subsetting our prediction fields at the original MAREDAT sampling
points increases pteropod standing stock estimates by approximately 50% to 62 to 95 Tg TC, while foraminifer
estimates remain near constant at 0.6 to 1.9 Tg TC. Finally, (c) excluding zero abundance observations before
modeling increases standing stock estimates to 91 to 140 Tg TC for pteropods and 2 to 3 Tg TC for foraminifers.
Combining all three modifications causes an increase of factor 3—4 for both plankton types. Following the same
methodology, pteropod biomass estimates are still a factor of 2—4 lower than the MAREDAT estimates, while
foraminifer biomass estimates are in the same range. A potential reason for this difference between the two plank-
ton groups might be the variation in patchiness due to the larger body size of pteropods. The original MAREDAT
pteropod abundance observations are nearly four times as patchy as those of foraminifers (Buitenhuis, Vogt,
et al., 2013), which could have led to a higher bias in the pteropod standing stock estimate. The exclusion of high
biomass outliers in our analysis (cf. Section 2.1.3) served to exclude erroneously reported observations to not

KNECHT ET AL.

17 of 27



A7t |

A\ Global Biogeochemical Cycles 10.1029/2022GB007685
AND SPACE SCIENCE
Table 4
Comparison Between Modeled Total Carbon (TC) Standing Stocks and Total Inorganic Carbon (TIC) Fluxes for Pteropods and Foraminifers With Previous Studies
Pteropods Foraminifers
Source Standing stock (Tg TC)  Carbon flux (Tg TICyr~!)  Standing stock (Tg TC) Carbon flux (Tg TICyr~!)
Estimates based on mechanistic modeling studies
Buitenhuis et al. (2019) 15241832 100-141#
Gangstg et al. (2008) 300
Estimates based on observational data
Bednarsek, Tarling, et al. (2012) 444-505%¢ 112-150b¢
Schiebel and Movellan (2012) 1-5° 3-12°
Schiebel (2002) 157-3894
Our results 49-57 8-22 1-2 3-35
1: MAREDAT methodology 46-57 12-15 0.5-1.1 5-10
2: Sampled at MAREDAT points & methodology 62-95 17-26 1-2 14
3a: W/o zeros 91-140 24-38 2-3 16-33
3b: W/o zeros, MAREDAT points & methodology 132-220 35-60 2-9 4-20
W/o CPR data 90-155 25-42 1-3 18-33

Note. All values were converted to represent TC and TIC, respectively. The results of the mechanistic studies from Gangstg et al. (2008) and Buitenhuis et al. (2019)
denote the reported CaCO, production and not the export flux. The export flux calculations include dissolution of the sinking calcium carbonate shells. However,
we do not take this into account in the current study. Thus, we compare the production terms before dissolution. The sensitivity analyses are shown in italics. For the
comparisons to MAREDAT, the projected biomass maps were sampled at the MAREDAT observation points of the respective plankton group (BednarSek, Mozina,
et al., 2012; Schiebel & Movellan, 2012). To be consistent with the methodology used in Bednarsek, Mozina, et al. (2012) and Schiebel and Movellan (2012), the total
standing stocks and fluxes were calculated from global non-weighted mean biomass concentrations and assuming one and nine complete overturn periods for pteropods
and foraminifers, respectively.

aBased on calcite production, not flux. ®Based on subset of observations used in this study. °Estimates based on non-zero observations only. “Flux at 100 m.

skew the analysis. While this may have led to the exclusion of high biomass events, these are considered local and
short-term events that cannot be reliably captured and modeled at the scale of our study.

In the context of the marine trophic foodweb, pteropods constitute approximately 6%—8% of total macrozoo-
plankton biomass, whereas foraminifers make up 0.1%-0.6% of microzooplankton biomass as shown in Figure 5
(Buitenhuis, Vogt, et al., 2013). Each plankton size class encompasses a broad range of taxonomic groups, so that
the relatively small contributions of pteropods and foraminifers is logical. In contrast to the other PFTs estimates
and the earlier MAREDAT estimates for pteropods and foraminifers, our results are based on global climatologi-
cal biomass estimates instead of spatially discrete observation data. This causes a lower discrepancy between our
mean and median estimates as well as a lower total standard deviation (Figure 5), because high biomass extreme
events are not as prevalent in our results as in the raw field observations (cf. also Section 4.4 and Figure S23 in
Supporting Information S1).

A Macrozooplankton 9.3 (0.2) +67.7 B Macrozooplankton 9.3 (0.2) + 67.7
Pteropoda 2.9 (0.005) + 67.7 Pteropoda 0.7 (0.58) +0.65
Mesozooplankton 6 (2.8) +13.6 Mesozooplankton 6 (2.8) +13.6
Foraminifera 0.03 (0.008) + 0.05 Foraminifera 0.02 (0.01) + 0.06
Microzooplankton 9.3 (3.1) +17.1 Microzooplankton 9.3 (3.1) 17.1
Picoheterotrophs 8.1 (6.6) + 6 Picoheterotrophs 8.1 (6.6) + 6
Diatoms 16.5 (1.7) + 104.7 Diatoms 16.5 (1.7) + 104.7
Phaeocystis 28.3 (2.2) + 96 Phaeocystis 28.3 (2.2) + 96
Coccolithophores 0.4 (0.05) + 2.4 Coccolithophores 0.4 (0.05) + 2.4
Diazotrophes 5.5 (0.03) +27.4 Diazotrophes 5.5 (0.03) +27.4
Picophytoplankton 12.7 (5.5) + 22.1 Picophytoplankton 12.7 (5.5) +22.1

Figure 5. Trophic pyramid of autotrophic and heterotrophic plankton functional types (PFT). The bars show the mean (light
gray filling) and median (dark gray filling, value in parentheses) biomass concentrations in pg TC L~ in the surface 200 m.
The standard deviation is denoted for each PFT. (a) shows the original results from the MAREDAT project presented in
Buitenhuis, Vogt, et al. (2013). (b) shows our updated estimates for pteropods and foraminifers as highlighted in red.
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Estimated pteropod TIC fluxes are a factor of 5-100 lower than in previous numerical modeling studies (Table 4).
The estimates by Buitenhuis et al. (2019) and Gangstg et al. (2008) are based on mechanistic models which
used published laboratory evidence for model calibration and observational data from MAREDAT for model
evaluation. However, the parametrization of the growth rate is based on copepod observations instead of ptero-
pods in Buitenhuis, Vogt, et al. (2013) and hence could have introduced a bias. The difference in depth at which
TIC-fluxes are reported (100 m in Buitenhuis et al. (2019) and 200 m in our study) likely introduce further
uncertainties, however as neither of the results include dissolution effects, these are deemed minor. An additional
reason for the discrepancy could be an incomplete representation of the true abundances in our observation data
due to sampling biases (cf. Section 4.4). Examples of such biases include net avoidance, diel vertical migration
(DVM), and the use of sub-optimal mesh sizes for the target group (e.g., in the CPR), which can lead to underesti-
mated abundances in our observational data (Doubek et al., 2020; Pinkerton et al., 2020; Zamelczyk et al., 2021).
Excluding CPR data from our models approximately doubles the estimated TIC fluxes (Table 4), however it also
increases uncertainty in the environmental driver dependencies (cf. Section 4.1).

Our foraminifer TIC flux estimates are of the same order of magnitude as the most recent observation-based
estimates and mechanistic model-based studies, albeit on the lower end for the latter (Table 4). The earlier obser-
vational study by Schiebel (2002) is based on much smaller data sets with a spatial bias toward the highly
productive North Atlantic Ocean and found substantially higher TIC fluxes. However, our results align well with
the flux estimate calculated by more recent studies, such as Schiebel and Movellan (2012). In our work, we only
account for large adults due to mesh size limitations, but including the biomass of earlier life-stages might double
foraminifer biomass and flux estimates (Schiebel & Movellan, 2012; see also Section 4.4). This uncertainty could
also explain the deviations of our results from the mechanistic model-based estimate by Buitenhuis et al. (2019),
which is a factor of 1.5-50 higher than our global annual TIC flux estimate. Similar as for pteropods, excluding
CPR data prior to modeling approximately doubles the estimated global annual TIC fluxes (cf. Table 4), which
might be indicative of non-optimal representation of foraminifer abundances in this data set.

Pteropods contribute 0.2%—3.2% to total annual global carbonate fluxes and foraminifers contribute 0.1%-3.8%,
assuming annual global fluxes amount to 0.7 to 4.7Pg TICyr~! (Ziveri et al., 2023). We can assume that the
carbon fluxes calculated in our study represent a lower bound estimate due to biases and incompleteness of the
observation data set (see Section 4.4). Coccolithophores are estimated to contribute 26%—52% to global carbonate
fluxes (C. J. O’Brien, 2015), which leaves 40%—70% of global carbonate fluxes unaccounted for and points to
an underestimation of the contribution from the calcifying zooplankton. Additional minor contributors to the
marine CaCO, budget are fishes, atlantid heteropods, pseudothecosomes (particularly the fully shelled Peracle
species), calcifying ostracods, dinoflagellates, ciliates and the larvae of both benthic molluscs and gymnosomates
(Buitenhuis et al., 2019). However, their contribution to global carbonate fluxes is not well constrained, but may
range between 3% and 15% per group (Buitenhuis et al., 2019; Schiebel, 2002; Wilson et al., 2009), and hence
warrants further investigation.

4.4. Limitations and Uncertainties

Here, we use large global data sets and an exhaustive model ensemble approach to estimate pteropod and
foraminifer biomass. We quantify and discuss the uncertainty arising from the model choice and key parametri-
zations of the growth rate and TIC-TC factor. However, our biomass and carbon flux estimates are affected by the
characteristics and errors underlying the observational data and the simplifying assumptions made for the model
setup. These include the interaction of spatio-temporal biases in sampling effort with the inherent patchiness
of plankton distribution, variations in sampling net mesh sizes, and limited taxonomic resolution for biomass
conversions (de Garidel-Thoron et al., 2022).

Patchy sampling across space and time leads to spatio-temporal biases in the training data set (Figure 2 and
Figures S4, S23 and S24 in Supporting Information S1). Data coverage is low in the low productivity oligotrophic
gyres and during the less productive months (Figure S23 in Supporting Information S1). We find that a large frac-
tion of the inter-model variability is due to environmental conditions outside of or at the outer ranges of the train-
ing data (Section 3.5 and Figures 3 and 4). Nonetheless, a large fraction of the global environmental space of our
predictor variables is covered by the abundance data sets, which allows us to predict biomass values with higher
certainty (Figure S25 in Supporting Information S1). Furthermore, plankton distributions are generally charac-
terized by a high level of seasonal and spatial patchiness (Figures S23 and S24 in Supporting Information S1;
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Beckmann et al., 1987; Boltovskoy, 1971; Buitenhuis, Vogt, et al., 2013; Siccha et al., 2012). Patchiness intro-
duces high variance in the observed abundances (Figure S23 in Supporting Information S1), which poses the
risk of underestimating the importance of high productivity events occurring on smaller scales. By aggregating
the biomass observations over the top 200 m of the ocean and averaging across grid cells, we dampen the vari-
ability in our biomass observations and deem this a reasonable approximation for mean annual export fluxes on
a global scale. The observation patchiness also causes a mismatch between the gridded monthly climatologies
used as environmental predictors and the mesoscale-affected biomass patterns (Benedetti et al., 2021; Righetti
et al., 2019). However, previous studies found no significant benefit of using highly temporally resolved data over
climatologies (Pinkerton et al., 2020), as the environmental conditions an organism experiences are based on their
Lagrangian movement over time (e.g., Hofmann Elizondo & Vogt, 2022). Of course, additional aspects that could
not be resolved by our current simplified bottom-up approach are species-specific responses to environmental
parameters, as well as top-down controls of the zooplankton biomass by predators. Finally, the use of coarse mesh
sizes for sampling relatively small zooplankton can underestimate the true abundances as small and/or mobile
individuals are missed (Fabry, 1989; Mack et al., 2012; Miloslavi¢ et al., 2014; Skjoldal et al., 2013; Tseng
et al., 2011; Wells, 1973; Zamelczyk et al., 2021). This is particularly relevant for the SO-CPR and Aus-CPR
observations, which use a large mesh size of 270 pm (Richardson et al., 2006) and make up 91% and 73% of our
training data for pteropods and foraminifers, respectively (Section 2.1.1). These sampling data constraints hence
cause our biomass and flux estimates to be lower-end estimates.

Further uncertainties in the standing stock and flux estimates come from the simplified abundance to biomass
conversions and the biomass to carbon flux derivation. We assumed species-level or group-level averages for
the size-based biomass conversion functions (Section 2.1.2). Yet, in practice these values vary based on ontoge-
netic stage, subspecies, cryptic species, the presence of symbionts for foraminifers (Schiebel & Hemleben, 2017;
Takagi et al., 2019), ambient temperature (Bradshaw, 1959), and food availability (Meilland et al., 2016; Schiebel
et al., 2001; Schiebel & Hemleben, 2005), as well as interactive effects of multiple drivers. These factors vary
with latitude and we could not account for them explicitly in the present carbon conversions (cf. Section 2.1.2)
due to a lack of available parametrizations. Therefore, we likely underestimated the global latitudinal variability
in our biomass predictions. Additionally, we could not include the effects of combined temperature stress and
ocean acidification on the physiological and population level (BednarSek et al., 2022). This might have caused
an overestimation of calcification rates and populations in specific regions such as upwelling systems that are
affected by multiple stressors. To convert biomasses to TIC fluxes, growth rates and the TIC-TC conversion
factor were based on spatially constrained data and a limited number of species due to data availability (cf.
Section 2.1.2). The choices made for the growth rate function and the TIC-TC factor had a significant impact on
flux estimates for pteropods, and for foraminifers to a lesser extent (Section 3.5). Plankton observations identi-
fied at a finer taxonomic level and species-specific laboratory-based conversion factors and growth rates would
likely increase the accuracy of our calculations. To estimate export fluxes at depth, particle sinking velocities and
dissolution rates need to be considered (Schiebel et al., 2007; Takahashi & B¢, 1984). During periods of peak
biomass production, high pulses of fast-sinking organisms occur and can drive higher export efficiency (Bach
et al., 2019; Schiebel, 2002). However, the relative species abundances observed in our upper ocean foraminifera
data (Figure S26 in Supporting Information S1) are in good agreement with those found in sediment trap data
in previous studies (e.g., Kretschmer et al., 2018; Lombard et al., 2011). This shows that the foraminifer surface
export fluxes and patterns found in our study are representative of export patterns found in the deeper ocean. For
pteropods, to our knowledge, no comprehensive global sediment trap data analysis has yet been conducted. To
assess comparability between fluxes at the surface and the deep ocean, such an analysis is hence much needed.

5. Conclusion

The aim of this study was to predict global monthly and annual patterns and drivers of shelled pteropod and
planktic foraminifer TC biomass distributions, their associated TIC fluxes, and to assess the importance of these
groups for the global biogeochemical cycling of carbon and CaCO,.

Globally, pteropods contribute 6%-8% and foraminifers 0.1%-0.6% to total global macrozooplankton and micro-
zooplankton TC standing stocks, respectively. The sinking of their shells and tests constitutes 0.2%—3.2% of the
total global annual surface TIC fluxes for pteropods and 0.1%—3.8% for foraminifers. These estimates are associ-
ated with significant uncertainty due to sampling data characteristics and simplifications in parametrization and
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likely constitute lower-bound estimates. We found biomass hotspots for both plankton groups in the high North-
ern latitudes, around the equator, and in the upwelling systems. Temperature and chlorophyll-a concentrations
were the two most important environmental covariates for modeling the biomass patterns.

Our modeling pipeline, together with novel abundance data from projects such as AtlantECO, can be used to
project global biomass patterns for various plankton functional groups. These estimates can be used to validate
newly developed mechanistic marine ecosystem models (Clerc et al., 2023; Le Quéré et al., 2016) of increased
complexity and higher diversity in zooplankton functional types. Additionally, the models can be employed to
assess future changes in plankton biomass by projecting the present models on future environmental fields under
climate change scenarios (Benedetti et al., 2021; Tittensor et al., 2021). This is particularly relevant considering
the high sensitivity of, for example, pteropods to ocean acidification and warming (Bednarsek et al., 2016; Manno
et al., 2016). Thus, we can identify hotspots of future biomass changes (complementary to future changes in
diversity as modeled in Benedetti et al., 2021) and potentially link these to risk assessments based on other ocean
health indices (Halpern et al., 2012).

Further steps should be taken to close the gaps in our understanding of and quantification of the biomass and
biogeography of all taxa that are important for global TIC export fluxes. Research in the field should increase
sampling activity in currently under-represented areas of the ocean such as the Southern Hemisphere as well
as the oligotrophic gyres to better cover the ecological niches of the modeled taxa. Additionally, the effects of
environmental conditions on the TIC-TC conversion factors and the growth rate parametrizations should be inves-
tigated in more detail, to better account for latitudinal and regional differences. The modeling pipeline developed
here can also be used to model other types of quantitative data, such as sediment trap data (Kucera et al., 2005) or
measurements based on novel approaches like underwater imaging techniques (Pesant et al., 2015). Using these
data, we could calculate the flux contributions from other calcifying organism groups such as fish and shelled
heteropods (Buitenhuis et al., 2019; Wall-Palmer et al., 2016; Wilson et al., 2009) based on a range of independ-
ent observations to improve our current uncertainty estimates. Comparing estimates based on upper ocean data
with those based on sediment traps could help improve our understanding of export patterns driven by different
groups as a function of depth as well as the effects of carbonate dissolution and sinking rates.

Data Availability Statement

The observational datasets used to train the models as well as the model outputs are publicly available on the
data platform PANGAEA (https://doi.org/10.1594/PANGAEA.957258; Knecht et al., 2023). An adapted version
of the modelling pipeline, applicable to any species abundance or biomass dataset in the AtlantECO format is
available on Zenodo (https://doi.org/10.5281/zenodo.7888452; Knecht, 2023).
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